

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Comparison of Various Films Used in Biophysical Investigations as Anisotropic Matrices

K. Fiksiński^a; D. Frąckowiak^a

^a Poznań Technical University, Institute of Physics, Poznań, POLAND

To cite this Article Fiksiński, K. and Frąckowiak, D.(1980) 'Comparison of Various Films Used in Biophysical Investigations as Anisotropic Matrices', *Spectroscopy Letters*, 13: 12, 873 – 889

To link to this Article: DOI: 10.1080/00387018008064074

URL: <http://dx.doi.org/10.1080/00387018008064074>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

COMPARISON OF VARIOUS FILMS USED IN BIOPHYSICAL
INVESTIGATIONS AS ANISOTROPIC MATRICES

KEY WORDS: Polyvinyl alcohol films, cellophane, gelatin,
phycobiliproteins, synthetic pigments, polar-
ized components of absorption spectra

K. Fiksiński and D. Frąckowiak

Poznań Technical University, Institute of Physics
ul. Piotrowo 3, 60-965 Poznań, POLAND

INTRODUCTION

Polarized spectra of biological molecules oriented in artificial systems can give useful information of structural and spectroscopical properties of these molecules^{1, 2}. Such investigations have been carried out recently for several biological systems: chlorophylls³,
4, 5, 6, 7, carotenoids⁸, biliproteins^{9, 10}, bacterial reaction centers^{11, 12}, bacteriochlorophylls¹³ etc.

The orientation of the solute molecules can be achieved by the application of an electric or a magnetic field^{14, 15}, by flow or by mechanical deformation of polymer films^{10, 11, 13}. In the last method several different media have been used. The aim of this paper is to provide information facilitating the choice of an anisotropic medium for a given biological sample. For that purpose a comparison of properties of three widely used films from gelatin, cellophane and polyvinyl alcohol (PVA) is presented.

A proper combination of anisotropic medium-solute has to fulfil as many as possible of the following conditions:

1. the solute has to be uniformly distributed in the whole volume of the matrix,
2. the chemical properties of the solute, as well as the film-solute interactions should be independent of the degree of deformation of the medium,
3. the deformation of the matrix should give an efficient orientation of the investigated molecule,
4. before deformation, the investigated species should be randomly orientated,
5. in many cases² it is further convenient if uniaxial orientation of molecules can be achieved,
6. any aggregation of the solute molecules should be independent on film deformation.

The behaviour of the investigated films is here tested by using two synthetic dyes: Congo red (C-red) and Solantine red (S-red), which are both molecules of elongated shape, see FIGs 2 and 3. Further, two pigment-protein complexes from red and blue-green algae: phycoerythrin (PE) and phycocyanin (PC) as well as the chromophoric group from PC - phycocyanobilin (PCB).

EXPERIMENTAL

Congo red and Solantine red were of chemical grade purity. C-red was considered an indicator of the film orientation, on the basis of an x-ray examination showing correlation with the linear dichroism of this dye in the same film¹⁶. Also S-red is known to be very efficiently oriented by anisotropic media¹⁷. PE and PC were obtained from Ceramium rubrum and Anacystis nidulans, respectively. Methods of extraction and purification of PE and PC are described elsewhere¹⁸. PCB was obtained by method of O'hEocha¹⁹.

The pigment-protein complexes PE and PC have both four pyrrol chromophoric groups (FIG. 1), which are bonded to proteins of a molecular weight (in the natural hexamer form) about 290.000 and 273.000 daltons, respectively²⁰. PCB can occur in several conformations

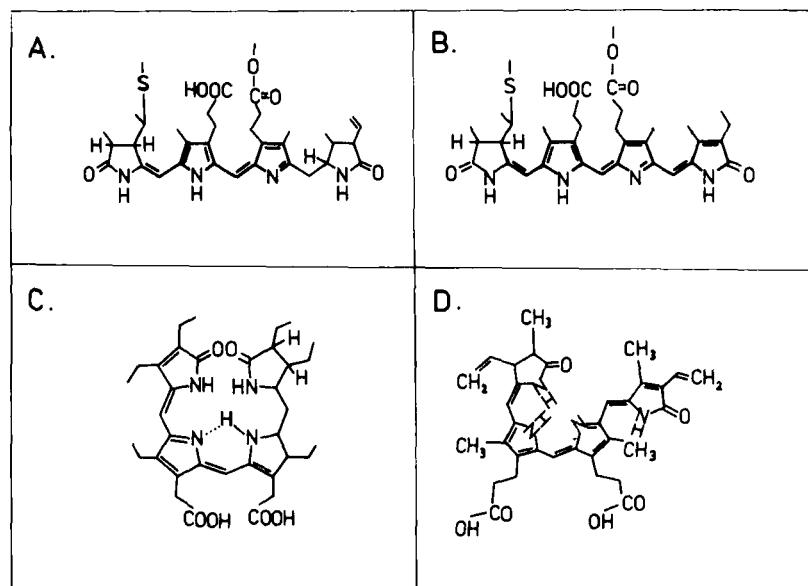


FIG. 1 Structural formulas of phycobilins: phycoerythrobilin (A), phycocyanobilin (B) and a proposed conformation of phycocyanobilin (C)²¹ and biliverdin (D)²².

- linear or more coiled ones^{21, 22, 23}, depending on the medium-solute interaction²⁴.

The pigments were introduced in PVA and gelatin films in the following way. The pigment was dissolved in PVA-water or gelatin-water (10% w/v) solution. A film was obtained by pouring such a solution on the glass plate and drying until the film contained about 20% of water. For details about the film preparation, see Refs 25 (PVA) and 26 (gelatin).

The anisotropy of these films was characterized by their mechanical deformation: a degree of elongation is evaluated as $E = \frac{\Delta l}{l_0} \times 100\%$.

Commercial cellophane film is anisotropic because of the method of production, therefore it can be used as orienting medium without stretching²⁷. Cellophane film was immersed in a water solution of dye for 6 to 8 hours, and subsequently rinsed with plenty of distilled water, in purpose of washing away any pigment from the surface, and thereafter dried. In this way coloured film of C-red and S-red were easily prepared with PCB, however, the pigment has first to be dissolved in methanol and this solution then diluted by water (1:1 v/v) and the cellophane be thereafter soaked in such a mixture, coloured, rinsed and dried. PE and PC, on the other hand, cannot be introduced into cellophane by this method.

Absorption and linear dichroism spectra were obtained with a Carl Zeiss Jena Specord UV-VIS spectrophotometer equipped with polaroid sheets. The absorption of light at two orthogonal orientations of the film was measured: A_{\parallel} with the electric vector parallel, and A_{\perp} with the electric vector perpendicular to the direction of film stretching; therefore, it was not necessary to introduce the Azumi-McGlynn correction²⁸.

Table 1. Linear dichroism $\left(S = \frac{\lambda_H - \lambda_L}{\lambda_H + 2\lambda_L} \right)$ of colored films $(\Delta S = \pm 0.005)$.

In brackets - values of λ corresponding to measured S .

Pigment	Congo red (C-red)	Solantine red (S-red)	Phycoerythrin (PE)	Phycocyanin (PC)	Phycocyanobilin (PCB) S [660]
matrix $\frac{\Delta 1 \times 100\%}{10}$	0.0	0.000	10^{-3}	10^{-3}	10^{-3}
	150%	0.008	0.027	$S [566] = 0.028$	$S [566] = 0.000$
gelatin	0.0	0.000	10^{-3}	10^{-4}	10^{-3}
	150%	0.008	0.023	$S [566] = 0.032$	$S [566] = 0.014$
cellulose	0.212	0.274	10^{-3}	10^{-4}	10^{-3}
	0.2	0.000	10^{-3}	10^{-4}	10^{-3}
polyvinyl alcohol PV _A	0.670	0.318	$S [495] = 0.000$	$S [500] = 0.001$	$S [500] = 0.000$
	300%	200%	$S [555] = 0.000$	$S [555] = 0.005$	$S [555] = 0.000$
			$S [495] = 0.000$	$S [500] = 0.041$	$S [500] = 0.123$
			$S [555] = 0.032$	$S [555] = 0.036$	$S [555] = 0.026$
			$S [495] = 0.019$	$S [500] = 0.019$	$S [500] = 0.032$

RESULTS AND DISCUSSION

Table 1 collects values of S , defined as

$S = \frac{A_{||} - A_{\perp}}{A_{||} + 2A_{\perp}}$, which is a measure of the degree of orientation of the sample and the anisotropy of its absorption.

Because of technical difficulties with solubilities only some combinations of solutes and anisotropic matrices could be evaluated.

The anisotropy of absorption of both the synthetic dyes C-red and S-red is practically constant in the whole absorption region, however, with the complexes, the function S was dependent on the wavelength; therefore in this case the λ at which S was calculated is given in bracket in Table 1.

As seen from Table 1 and FIGs 2, 3, C-red and S-red are more efficiently oriented in PVA and cellophane than in gelatin.

The anisotropy of absorption of the PE and PC complexes is of the same order of magnitude in all three matrices (FIGs 4, 5).

As seen from FIG 2 the absorption of C-red in all three films exhibits a red shift with respect to the absorption of this dye in water solution. In a dry PVA film, the monomer (maximum at 512 nm) and dimer (538 nm) absorption bands are well resolved. The shape of the absorption spectrum in cellophane suggests also some contribution from dye aggregates in the long wavelength

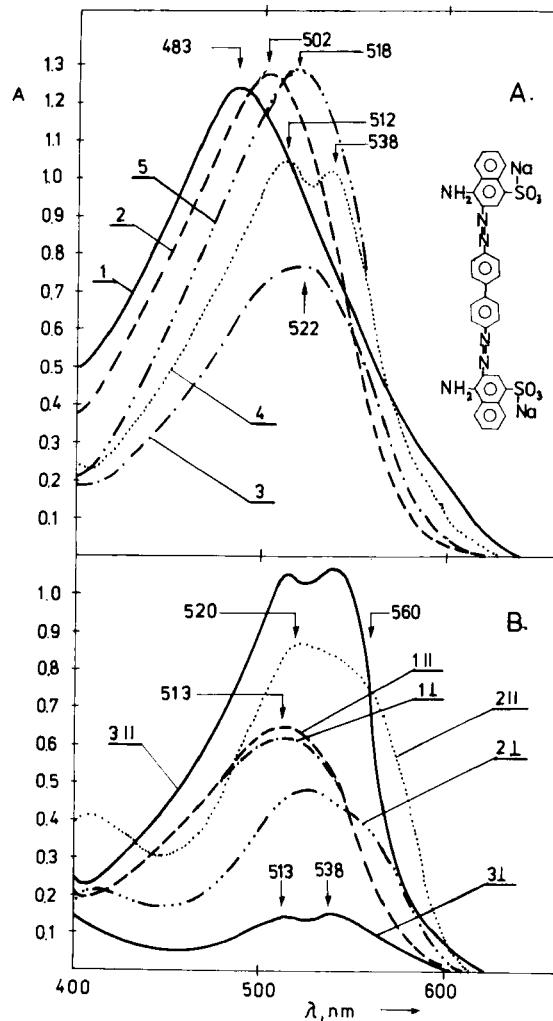


FIG. 2 A. Congo red absorption spectra, 1 - in water, 2 - in methanol, 3 - in PVA-water solution, 4 - in dry PVA film and 5 - in gelatin-water solution = in dry gelatin film.
 B. Polarized components of absorption spectra of Congo red, 1 - in gelatin film elongated till 150%, 2 - in cellophane and 3 - in PVA film stretched till 300%.

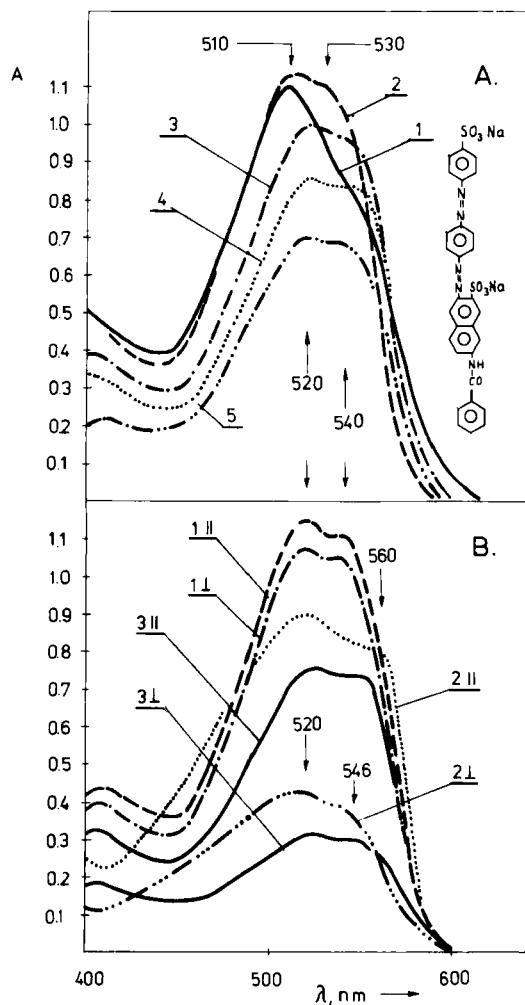


FIG. 3 A. Solantine red absorption spectra (1 - in water, 2 - in methanol, 3 - in PVA-water solution, 4 - in dry PVA film and 5 - in gelatin-water solution = in dry gelatin film).
 B. Polarized components of absorption spectra of Solantine red (1 - in gelatin film elongated till 150%, 2 - in cellophane and 3 - in PVA film stretched till 300%).

region (about 560 nm). In gelatin the C-red molecule is almost unoriented, whereas in both the other films it is oriented to a high degree (Table 1 and FIG. 2). In PVA and cellophane the shapes of the parallel and perpendicular absorptions are similar indicating that the monomer and the aggregates are oriented in a similar manner.

Upon comparison of the spectra of S-red (FIG. 3) with those of C-red (FIG. 2) one can see the following small differences

1. S-red in unstretched gelatin exhibits a small positive anisotropy of absorption ($A_{\parallel} \neq A_{\perp}$), whereas C-red is isotropically distributed. Stretching of the film does not affect the small anisotropy of S-red and it is probable that it can be related to some anisotropy produced in the process of film preparation.
2. PVA orients C-red more efficiently than S-red, whereas the degree of orientation of S-red is a little higher than that of C-red in cellophane.

FIG. 4 shows spectra of PE in different media. In both, gelatin and dry PVA films shape of spectrum is deformed with respect to that in the buffer and in the solutions of PVA and gelatin. In films, the maximum at 548 nm decreases and that at 566 nm increases. The shape of the spectrum, as well as the spectral dependence of the absorption anisotropy, is a function of the pig-

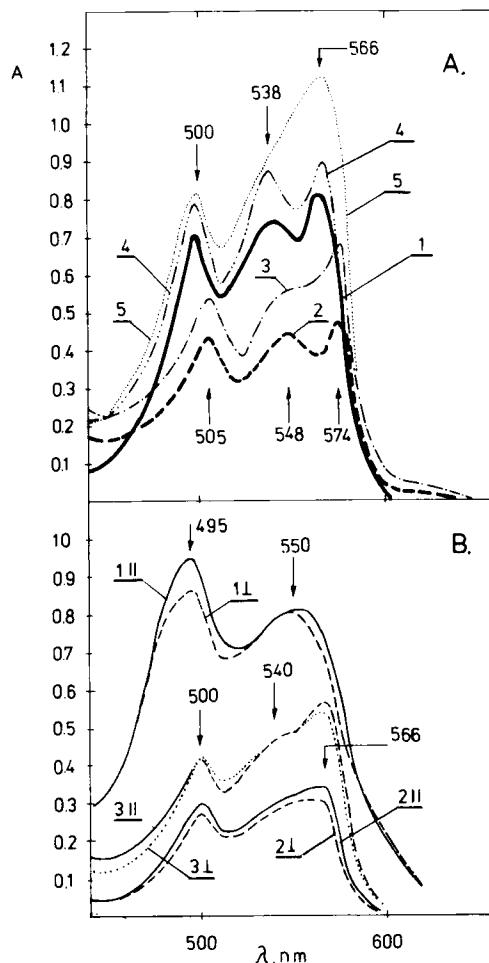


FIG. 4 A. Absorption spectra of phycoerythrin (PE). Curve 1 - in phosphate buffer, 2 - in liquid gelatin (10% gel in water), 3 - in dry gelatin film, 4 - in PVA-water solution and 5 - in dry PVA film.

B. Polarized components of absorption spectra of PE, "high" (10^{-3} M) concentration (curves 1) and "low" (10^{-5} M), concentration (curves 2 and 3); curves 1 and 2 - in PVA film (stretched 300%) and curves 3 - in stretched gelatin film (150%).

ment concentration and the type of the anisotropic matrix. For concentrated PE samples (10^{-3} M) in PVA, the signs of S at long and short wavelengths are different. The transition moments responsible for the absorption at 500 nm (phycourobilin) are well oriented parallel to the direction of stretching in PVA, but almost unoriented in gelatin.

A corresponding set of spectra for PC is presented in FIG. 5. The change in shape of the spectrum as a result of film drying is smaller for PC than for PE. An anisotropy of absorption of PC in PVA is only observed for high pigment concentration, at low, as it was reported previously⁹, $A_{||}$ is equal A_{\perp} (FIG. 5). Even at average PC concentration in gelatin, anisotropy of absorption is well measurable.

FIG. 6 shows spectra of PCB and the chromophoric groups of PC. The PCB orientation in all matrices is low in comparison with that of C-red and S-red in the same films (Table 1), which suggests that these chromophores occur in both films, not in elongated conformations, but in semicoiled or coiled forms (FIG. 1)^{23, 24}. In PVA film PCB shows large differences in S values between the long (660 nm) and short (608 nm) wavelength regions. This effect, which is not observed for PCB in cellophane film (FIG. 6), can be explained by the two-phase character of PVA^{24, 29, 30}. The PVA matrix is com-

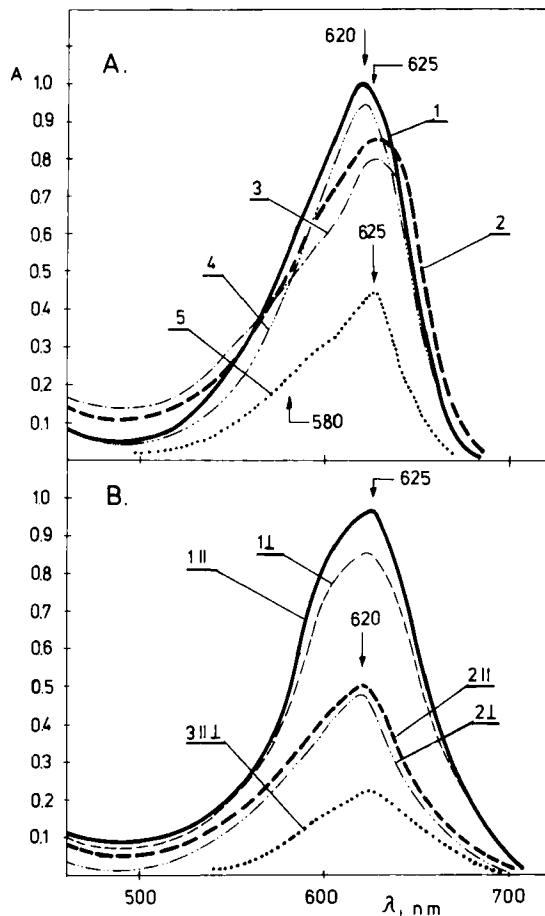


FIG. 5 A. Absorption spectra of phycocyanin (PC). Curve 1 - in phosphate buffer, 2 - in liquid gelatin, 3 - in dry gelatin film, 4 - in PVA-water solution, and 5 - in dry PVA film. B. Polarized components of absorption spectra of PC "high" (10^{-4} M) concentration (curve 1 and 2) and "low", 10^{-5} M, concentration (curves 3); curves 1 and 3 - in PVA sheets stretched (300%) and curves 2 - in stretched (150%) gelatin films.

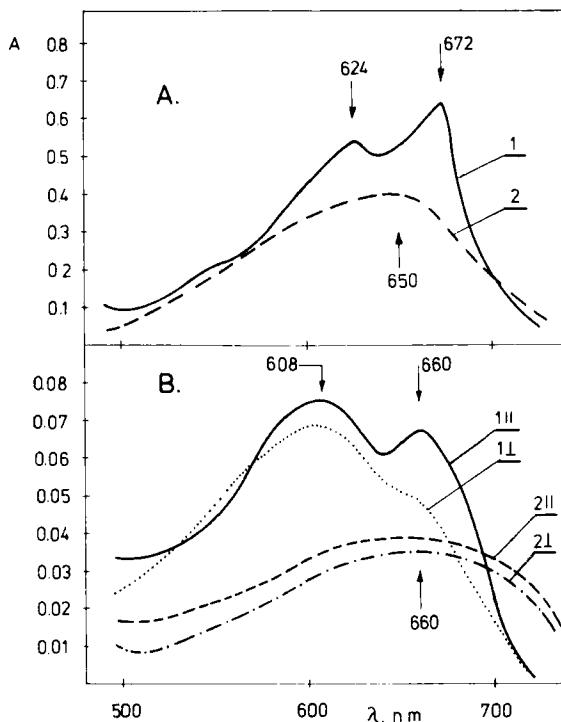


FIG. 6 A. Absorption spectra of phycocyanobilin (PCB) in: 1 - chloroform and 2 - methanol.
 B. Polarized components of absorption spectra of PCB: 1 - in stretched (200%) PVA and 2 - in cellophane.

posed of crystallites embedded in an almost isotropic medium. The crystalline region differs in acidity from the rest of matrix, thus the basic form¹⁹ of the pigment (absorbing at 608 nm) occurs predominantly in the amorphous phase, whereas the acidic form (660 nm) is seen in the crystallites. As a result the acidic form is oriented to a higher degree than the basic one.

From the presented result one may draw the following conclusions:

1. PVA and cellophane are more efficient in orienting pigment molecules than gelatin, but the absorption anisotropy of the pigment-protein complexes in PVA and gelatin are similar.
2. The complexes are not only oriented as a whole in the anisotropic films, but may also to some extent be deformed as a result of film stretching, as indicated by different degrees of orientation of various chromophores.
3. The degree of aggregation of the synthetic dyes is independent of the film deformation, but the problem is more complicated in a case of pigment-protein complexes^{9, 10}.
4. PVA can not always be treated as a uniphasic medium - such a treatment is especially dangerous with PVA for pigments with spectra sensitive to the medium acidity. In other cases it seems to be an excellent matrix, and it should be noted that it does not change the spectral properties of biological pigments more than gelatin (which is often recommended as a more "natural" medium)²⁶. It has further the advantage that it can be used both on the complexes and their chromophoric groups, which thus enables comparison of the orientations at similar conditions.

ACKNOWLEDGEMENTS

This study was carried out within the frame of Project R.III.13.1.6. in coordination with the Institute of Biochemistry and Biophysics of Łódź University.

REFERENCES

1. B.Nordén, Zag. Biofiz. Współcz, 3, 165, (1978).
2. B.Nordén, Appl. Spectrosc. Rev., 14, 157 (1978).
3. D.Bauman and D.Wróbel, Biophys. Chem., 12, 83 (1980).
4. D.Monchor and K.Vaček, Studia Biophysica 72, 117 (1978).
5. D.Monchor and K.Vaček, ibid 72, 119 (1978).
6. R.Journeaux and R.Viovy, Photochem. Photobiol., 28, 243 (1978).
7. D.Frąckowiak, D.Bauman, H.Manikowski and T.Martyński, Biophys. Chem., 6, 369 (1977).
8. H.Wedel and W.Hasse, Ber. der Bunsen Gesellschaft. 80, 1342 (1976).
9. D.Frąckowiak, Bull. Acad. Polon. Sci. Ser. Sci. Biol. XXVI, 161 (1979).
10. D.Frąckowiak, K.Fiksiński and H.Pieńkowska, Studia Biophysica 63, 183 (1977).
11. R.K. Clayton, C.N.Rafferty and A.Vermeglio, Biochim. Biophys. Acta 545, 58 (1979).
12. C.N.Rafferty and R.K.Clayton, Biochim. Biophys. Acta 545, 106 (1979).
13. J.Bolt and K.Sauer, Biochim. Biophys. Acta 546, 54 (1979).
14. D.Frąckowiak, Photochem. Photobiol., 28, 377 (1978).
15. J.Breton, M.Michel-Villaz and G.Pailletin, Biochim. Biophys. Acta 314, 42 (1973).

16. L.Sarzevski and A.N.Sevchenko, *Anisotropy of absorption and emission of light by molecules* (Russ.), MINSK 1971.
17. K.Toriyama and T.Ishibashi, "Measurements of alignment tilt in twisted nematic displays" in: *Nonemissive Electrooptic Displays*, A.R.Kmetz and F.K. v.Willison, Eds. New York: Plenum 1976.
18. D.Frackowiak and J.Grabowski, *Photosynthetica* 4, 236 (1970).
19. C.O'hEocha, *Biochemistry* 2, 375 (1963).
20. P.O'Carra, *Biochem. J.*, 94, 171 (1965).
21. H.Scheer and W.Kufer, *Z. Naturforsch.*, 32c, 513 (1977).
22. Q.Chae and P.-S.Song, *J. Amer. Chem. Soc.*, 97, 4176 (1975).
23. P.-S.Song, Q.Chae and J.D.Gardner, *Biochim. Biophys. Acta* 576, 479 (1979).
24. D.Frackowiak, K.Fiksiński and H.Pieńkowska, *Photobiophys. Photobiochem.*, in press.
25. S.Surma and D.Frackowiak, *Photosynthetica* 4, 202 (1970).
26. C.N.Rafferty and R.K.Clayton, *Biochim. Biophys. Acta* 502, 51 (1978).
27. D.Frackowiak and S.Koltun, *Acta Phys. Polon.*, XXIII, 685 (1963).
28. T.Azumi and S.P. McGlynn, *J. Chem. Phys.*, 37, 2413 (1962).
29. H.Tadokoro and M.Kobayashi, in: *Polymer Spectroscopy*, Eds. D.O.Hummel, Verlag Chemie, Berlin 1974.
30. R.Drabent, *Zesz. Nauk. Akad. Roln. Tech.*, Olsztyn Techn. Zywn., 11, 3 (1977).

Received 10-06-80

Accepted 10-28-80